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We model the Western Roman Empire from 500 BCE to 500 CE, 
aiming to understand the interdependent dynamics of army size, 
conquered territory and the production and debasement of coins 
within the empire. The relationships are represented through feed-
back relationships and modelled mathematically via a dynamical 
system, specified as a set of ordinary differential equations. We 
analyze the stability of a subsystem and determine that it is neutrally 
stable. Based on this, we find that to prevent decline, the optimal 
policy was to stop debasement and reduce the army size and territory 
during the rule of Marcus Aurelius. Given the nature of the stability of 
the system and the kind of policies necessary to prevent decline, we 
argue that a high degree of centralized control was necessary, in line 
with basic tenets of structural-demographic theory. 

1. Introduction 

Mathematical and numerical modelling has increasingly been passing through 
disciplinary boundaries, with quantitative models in the social sciences becoming 
more common. Cliodynamics is one such recent development (Turchin 2008, 
2011), wherein the integration of quantitative methods and historical knowledge 
brings new insights into human behavior and social institutions. 

The present study lies within this domain. Our research focus is to quantify 
feedback relationships between a set of variables in the many factors at play in the 
decline of the Western Roman Empire. There are centuries’ worth of explanations 
for the decline of the Western Roman Empire. An early starting point for the study 
of the Roman Empire and its decline is the work of Gibbon (1776). Since then, at 
least 210 reasons and theories have been put forth for the fall of the Roman Empire 
(Storey and Storey 2017), a list of which was originally compiled by Demandt 
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(1984). In Appendix A, we sort these possible reasons into different categories and 
discuss their viability as explanations of collapse. Inspired by Tainter (1988), we 
identify the following categories: exogenous causes that are either natural (e.g., 
calamities), or social (e.g., foreign invaders), endogenous causes that are either 
always present (e.g., wealth differences) or episodic (e.g., civil wars) and other 
reasons that have a moral or mystical nature (e.g., egoism, lack of dignity). 

Any one given cause is unlikely to explain why a complex phenomenon, such as 
the decline of a civilization, occurred. As such, we focus on determining the 
relationships between several interrelated factors, such as the size of the army, 
that of the territory, and the quality and quantity of coins, and how these 
dependencies affected them over time. In addition, the model we have built is 
mathematical and computational in nature, which provides a quantitative 
understanding of the different factors in play. Thus, we move from the mental (or 
conceptual) models listed in Appendix A to quantitative, precise ones, where the 
magnitudes of the variables are known or determined. 

The maximum time horizon for our model is from 500 BCE to 500 CE, and we 
aim to understand the interdependent dynamics of the size of the army, the 
territorial expanse and the production and debasement of coins within the empire. 
These are the historical data we used, which pertain to the full lifespan of the 
empire or to key periods (such as the height of the empire) and are representative 
of the entire western empire. The relationships between these quantities are 
represented through feedback mechanisms and modelled mathematically via a 
dynamical system specified as a set of ordinary differential equations. By solving 
the system, we can check to what extent the historical record is recovered by the 
model. While the parameters of the model are determined so that the model 
predictions best fit the data, they are nonetheless archaeologically meaningful. 

Through a stability analysis, we show that a subsystem of the model has a 
neutrally stable center and periodic orbits. Excluding negative values for the 
variables, trajectories at any given distance from the center are possible. The 
trajectory most closely resembling the historical record for the Western Roman 
Empire is the one of maximum distance from the center, reaching zero as the 
minimum of the periodic orbit for each variable. Due to this stability of the system, 
we can recommend fiscal and military policies that could probably have prolonged 
the existence of the empire by several centuries.  

Our results connect to and partially validate structural-demographic theory 
(SDT) (Goldstone 1991, 2017; Turchin 2003, 2013). Given the nature of the 
stability of the system and the kind of policies necessary to prevent decline, we 
argue that a high degree of centralized control was necessary, in line with basic 
tenets of SDT. In SDT terminology, the “state” had a significant role to play in the 
dynamics of the empire, due to its military policies (which affect army size) and 
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fiscal measures (which concern the debasement of coins). Thus, of the key aspects 
of SDT, the most pertinent aspect with regard to our model is the high degree of 
centralization that directed military and monetary policy in the Roman Empire.  

Societal collapse can be defined as “a rapid, significant loss of an established 
level of sociopolitical complexity” (Tainter 1988). However, there is a wider debate 
regarding the notion of collapse and how it applies to specific cases, such as in the 
case of the Maya (Aimers 2007; Storey and Storey 2017). Furthermore, a process, 
be it a collapse or any other, is rapid only relative to certain timescales. For the 
Western Roman Empire, views and terminology range from calling its later 
centuries a decline and fall (Gibbon 1776), a collapse (Tainter 1988) or a slow 
collapse (Storey and Storey 2017). We do not enter into this debate, but given the 
data, we built a model that integrates several factors in a consistent, minimal 
fashion and gives results in line with the archaeological record. 

We do not claim to have achieved an all-encompassing theory of the decline of 
the Western Roman Empire. We neither compare nor do we address any aspect 
regarding its relationship with the Eastern Roman Empire. The division of the 
empire at 395 CE is treated as an exogenous factor in the model, a feature we 
explain in the modelling section of the paper. Furthermore, our modelling effort is 
not aimed at incorporating all the complexities of Roman society, the multitude of 
sociopolitical aspects, and relationships with foreign forces and cultures. 

In the following section, we review several existing quantitative models that 
capture different aspects of the Roman Empire (e.g., military strategies, travel). 
Next, in section 3, we specify the model, explaining the equations and the factors 
they take into account. In section 4, we show the fit to the historical record, provide 
an approximate analytic solution and, on the basis of our model, we present 
policies that would have prevented the decline of the empire. In section 5, we 
provide a discussion of the limitations of the model, particularly with regard to the 
role of gold in the empire. We then discuss our findings, specifically, the feedback 
mechanisms the model suggests existed within Roman society, how this relates to 
what is historically known, and how different policies could have affected the long-
term evolution of the empire. Lastly, we conclude with a summary of the paper’s 
contribution. In Appendix A, we list the 210 possible reasons that Demandt (1984) 
found for the decline of the Roman Empire; we classify them and discuss their 
adequacy as explanations for decline or collapse. In Appendix B, we detail the 
mathematical aspects of the stability analysis for the dynamical system we propose 
as a model, along with the main results of the sensitivity analysis for the 
parameters. 
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2. Mathematical and Computational Models of the Roman 
Empire 

While the decline of the Roman Empire has been studied for centuries, the mathe-
matical modelling of the possible dynamics of and within the empire has only been 
attempted in recent decades. Several papers have focused on geographical aspects 
of the Roman Empire; either related to military activity (Stewart 1999; ReVelle and 
Rosing 2000; Henning 2003), travel (Graham 2006) or commerce (Scheidel 2013, 
2014). 

Stewart (1999) introduced a graph-theoretic method for approaching the 
problem of how to secure the different regions of the Roman Empire from possible 
attacks. ReVelle and Rosing (2000) analyzed this mathematical problem and 
possible strategies in greater depth. Henning (2003) explored ways of reducing the 
substantial costs of maintaining legions and developed a new strategy for tackling 
the problem. While applicable to the Roman Empire, these graph-theoretic 
considerations are much more general and not specific to the Roman case. 

Graham (2006) carried out a study that focuses more on the Roman Empire. 
Employing network analysis, he used Antonine itineraries in agent-based simula-
tions of information diffusion along the different routes. An estimate was obtained 
for the time it would take for information to reach different fractions of the 
population, and the findings were partially validated against the density of 
inscriptions in the different regions of the empire. Another model that focuses on 
geographical aspects is ORBIS: The Stanford Geospatial Network Model of the 
Roman World, which simulates the time and costs associated to travel via land, 
rivers or sea in the Roman Empire in conditions approximating the state of the 
empire at 200 CE. By using this network model, Scheidel (2013) determines the 
correlation between maximum prices of transported goods and sailing time. 
Similarly, with the same network model, Scheidel (2014) estimates travel times 
and costs within the empire at courier and military speeds during the summer and 
winter. While these geographical models are important for quantifying aspects of 
Roman communication and travel, they are static in nature, temporally 
constrained to periods after the first century BCE, at the mature stages of the 
empire. 

The model we develop does not have any spatial resolution, but rather focuses 
on aggregated quantities and their interdependent dynamics over time, aiming to 
understand periods of growth and decline. Work in a similar spirit has been done 
by Gündüz (2002), who aims to fit a power law to the total area versus time during 
the growth stages of the Roman and Ottoman empires. A good fit to the historical 
record is achieved, with exponents that are related to the golden ratio and other 
irrational numbers. While numerical results are presented, no model for different 
dependencies (e.g., feedback relationships) between quantities is proposed. 
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Sverdrup and colleagues (2013) propose a model for analyzing the scarcity of 
resources in the modern world. Beyond these considerations, data on the Roman 
world is presented and a conceptual model is proposed in the form of a causal loop 
diagram. The diagram specifies feedback relationships between different factors 
(e.g., population, resource base, military strength) but no equations are given to 
capture these dependencies quantitatively. Yaroshenko et al. (2015) conducted a 
wavelet analysis of changes in population and territory for the Roman Empire and 
the European Union. The analysis takes as input a time series and determines 
whether at each point in time the system was in a chaotic state or not, depending 
on the frequency of the wavelet (higher frequency means more chaotic). However, 
beyond the evaluation of the states at different points in time, no explanation for 
the results based on causal mechanisms is proposed. 

Building upon previous research, we map feedback mechanisms between the 
army size, land extent and coin production, which we capture in a system of 
ordinary differential equations. Thus, by solving this system of equations, we can 
see how these aggregate quantities evolve over time and compare them with the 
archaeological record. This allows us to validate the model in the sense that it 
forms a possible set of dynamics for the real system, at least within the range and 
scope of the data used. 

3. Model Specification 

In this section, we first outline the modelling methodology we employed and then 
introduce our model (3.1)–(3.5) for the growth and decline of the Western Roman 
Empire. Afterwards, we discuss its structure and how the different terms can be 
interpreted, along with the parameters and their values, which are given in Table 
1. 

In the model (3.1)–(3.5), we account for the growth and decline of the army 
size, the land conquered and the production and debasement of silver coins. The 
evolution of the army size is estimated from multiple sources (MacMullen 1980; 
Ward 1990; Roth 1999; Campbell 2006). The extent of land conquests over time is 
from Taagepera (1979), and the data for the production of coins is from Hopkins 
(1980), while debasement information is from Tainter (1988, 1996). The time span 
of the data regarding the army and land is 1000 years, from 500 BCE (-500) to 500 
CE (+500), which determines the maximum time horizon for the model. We refer 
to the historical time series, which we aim to reproduce as reference modes (see 
Figure 1).  

Given this data, the task of developing a dynamical systems model can be 
understood as constructing a set of ordinary differential equations (ODEs), whose 
solutions reproduce the observed historical trajectories. The system of ODEs gives 
the rate of change of variables (e.g., army size, territory), which are typically  
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Table 1. Parameter and initial values for model (3.1)–(3.5) 

Notation Meaning Value 

𝑝0 Debasement effect on changes of army size 1142 soldiers/year 

𝑝1 Scaling parameter for debasement 0.5 

𝑝2 Army effect on changes in area of territory 326 km2/year 

𝑝3 Scaling parameter for army size 200 000 soldiers 

𝑝4 Debasement effect on changes of area of 

territory 

14 276 km2/year 

𝑝5 Territory effect on changes in debasement 0.002856 

𝑝6 Scaling parameter for area of territory 2 500 000 km2 

𝑝7 Net growth rate of silver reserves 2.5% 

Λ Army and territory decrease after division 55% 

𝑡0 Initial time -500 

𝑡𝑑 Time of division 395 

𝑥(𝑡0) Initial value of army size 48 850 soldiers 

𝑦(𝑡0) Initial value of territory area 648 521 km2 

(𝑧1 𝑧2⁄ )(𝑡0) Initial value of silver concentration 17.3% 

𝑧1(𝑡0) Initial amount of silver 0.33 million coins 

𝑧2(𝑡0) Initial number of coins 1.91 million coins 

 

expressed as linear and nonlinear combinations of the variables themselves. Often, 
these type of models do not have an explicit time dependence and are called 
autonomous. Exogenous effects, not modelled directly by the system, can be 
incorporated as time-dependent terms. 

Mathematical models of this type abound in physics, mathematical biology and 
engineering (Strogatz 2015). Within the social sciences, a substantial number of 
such models have been developed in the field of system dynamics (Sterman 2000). 
Beyond fitting the observed time series, the model should have a structure and 
terms that are overall meaningful from a psychological, sociological and historical 
perspective. When constructing an ODE model of a complex social system, one 
main guiding principle is the identification of feedback mechanisms between the 
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different variables. This allows us to uncover dependencies between variables and 
to ensure that the relationships within the mathematical model reflect real 
qualitative and quantitative features. 

However, developing a model that fits the historical record, is faithful in 
capturing feedback relationships, has terms and parameter values that can be 
calibrated and interpreted meaningfully and is robust enough to overcome 
uncertainties in the data, is challenging (Sterman 2000). Theoretical insights, 
feedback analysis and modelling principles (such as those employed in population 
dynamics [Turchin 2003]) can help identify meaningful equations for the model, 
but the task of verifying the adequate combination of factors is laborious. Our 
initial aim was to use an automated equation discovery framework, such as SINDy 
(Brunton et al. 2016) that performs linear regression on gradients (i.e., rates of 
change) on combinations of variables to identify ODEs that generate trajectories 
consistent with the reference modes. 

However, the uncertainty in the data and its granular nature prevents the 
determination of reliable gradient information, which then makes automated 
equation discovery unfeasible. A way to resolve the low resolution problem in the 
data is to use a smooth approximation and, in the case of the reference modes for 
the army, land and coin debasement, we found that the data is well approximated 
by sine and cosine curves, such as in the solution (4.1). Then, we could infer the 
system of ordinary differential equations of the subsystem (3.1)–(3.3), which has 
an almost linear structure (except for the discontinuities). Thus, we arrived at part 
of the model in a semi-analytic way and did not have to resort to searching in high-
dimensional feature space, which automated equation discovery frameworks have 
to do. We detail below further aspects of the model. 

In total, there are four independent equations in the model (3.1) –(3.5); 
specifically, only two of the last three equations (3.3)–(3.5) are independent. These 
latter equations account for the number of minted silver coins 𝑧2, the amount of 
silver used 𝑧1 (measured in equivalent number of pure silver coins) and the ratio 

𝑧1/𝑧2  that gives the average silver content of a coin in circulation, which is how the 
debasement of coins is measured and tracked in the historical data (van Heesh 
2011). Data referring to coin production and debasement is available over a 
shorter time span than for the army or land, and we cannot guarantee accurate 
results outside the time period for each dataset. We do not attempt to capture in 
the model the variety of different coins used by the Romans throughout time. 
Instead, we aim to account for an aggregated measure in 𝑧2, which reflects an 
equivalent total value. Nevertheless, the representative coins incorporated in the 
model are mostly closely reflected in denarii: see Figure 1 (d).  
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Let 𝑥 be the army size, 𝑦 the land conquered, 𝑧1 the amount of silver used in 
minting (measured in coins) and 𝑧2 the number of minted coins. We propose the 
following dynamics for these quantities: 

�̇� = 𝑝0 (
𝑧1

𝑝1𝑧2

− 1) − 𝜆𝛿(𝑡 − 𝑡𝑑)𝑥 

�̇� = 𝑝2 (
𝑥

𝑝3

− 1) + 𝑝4 (
𝑧1

𝑝1𝑧2

− 1) − 𝜆𝛿(𝑡 − 𝑡𝑑)𝑦                                 (3.2) 

(
𝑧1

𝑧2

)
′

= 𝑝5 (1 −
𝑦

𝑝6

)                                                                                    (3.3) 

�̇�1 = 𝑝7𝑧1 (1 −
𝑦

𝑝6

)                                                                                      (3.4) 

�̇�2 = 𝑧2 (1 −
𝑦

𝑝6

) (𝑝7 − 𝑝6

𝑧2

𝑧1

)                                                                  (3.5) 

where the parameters 𝑝0, … , 𝑝7 are assumed non-negative and determined such 
that the trajectories the system generates match as closely as possible to the 
reference modes (see Figure 1). The year 𝑡𝑑 = 395 CE is when the empire divided 
into two separate parts for political reasons, with the surface area of the western 
empire decreasing by 𝜆 = 55% (Taagepera 1979). This change is modelled as an 
exogenous shock to the system, where the land extent and army size are reduced 
by a fraction 𝜆. 

The first equation (3.1) of the model dictates the evolution of the army size 𝑥. 
The first contribution to the rate of change of the army size is given by the 
debasement of the coins in circulation. We can understand this as follows: if a 
conquest was successful, then the influx of silver and other resources led to 
economic benefits, e.g., reduced taxation to citizens (Tainter 1988), which also 
translated into coins of high purity. This then encouraged further conquest, which 
remained in proportion to the returns, as measured in the quality of the minted 
coins. The operations on 𝑧1/𝑧2 within the parenthesis change the value from the 
interval [0; 1] to [-1; 1], so that contractions can be also be experienced as expected 
if the returns are too low and the quality of coins declines. The parameter 𝑝1  sets 
the scale difference between [-1; 1] and the range of 𝑥. 

The second contribution to the army is due to the division of the empire at 𝑡𝑑 = 
395. The drivers of this split were political in nature (Taagepera 1979) and could 
not be captured in an autonomous way (with no explicit time dependence). Thus, 
we model the division occurring at 𝑡𝑑 = 395 as an exogenous change (or shock) that 
reduces the army size and land extent by half. The exogenous shocks are modelled 
with Dirac delta functions 𝛿(𝑡 − 𝑡𝑑), centered at the time of the division. 

(3.1) 
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Figure 1. Comparing the historical reference modes (solid lines) with model 
output (dashed lines). The evolution of (a) army size, (b) land conquered and (c) 
debasement (measured as percentage silver content of coins) as predicted by the 
model. In (d), the predicted amount of minted coins follows a similar trend to the 
historical record and matches well on the downward trajectory. 

 

The second equation (3.2) of the model specifies how the land conquered 𝑦 
changes. There are two contributing terms, distinct from the exogenous shock 
mentioned. First, the army size contributes to more land being conquered. Second, 
the conquest of more land takes place if there are sufficiently high returns to this 
activity, which is measured by the quality of minted coins (given by the silver 
content), just as for the army size. 

Comparing the parameters 𝑝2 and 𝑝4, we can see that the second term, due to 
the debasement, has a more significant influence on the rate of change of the land 
conquered 𝑦. By looking at the solutions (4.1) of the equations in subsystem (3.1)–
(3.3), we can see that the first term, due to the army size, amounts to a delay of 𝛿 = 
4 years (see Table 2) in the expansion of land compared to the growth of the army. 
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This is consistent with what we would expect, namely that an increase in land 
extent is subsequent to an increase in the army size. Furthermore, most Roman 
wars ranged in duration from a year to a decade. The delay 𝛿 = 4 years is close to 
the average time we have estimated for Roman wars prior to the third century. 
Thus, the value for 𝛿 is consistent with what we would expect on average for a 
delay between an increase in army size (before a war) and an increase in territorial 
expansion (after a war).  

The third equation (3.3) gives the rate of change of the silver content of coins 
𝑧1 𝑧2⁄ , whose dynamics depend on the land conquered, 𝑦. We expect a law of dimin-
ishing returns to hold, meaning that early conquests are highly profitable. When 
the empire has grown extensively, later conquests are less profitable and affect the 
quality of coins in a detrimental manner. This assumption is consistent with the 
historical data shown in Figure 1(b) and (c). Mathematically, this de-pendence is 
captured by a setting an upper limit to profitable land conquests, given by 𝑝6. The 
value of 𝑝6 = B can be determined by fitting the output of the model to the data: see 
section 4. 

The structure of the equation for 𝑧1 𝑧2⁄  and the parameter values are thus 
sufficient for reproducing the reference mode, and so are consistent with the his-
torical record. However, we can also interpret 𝑝6 in a different way. According to 
Marchetti and Ausubel (2012), a state is stable if the distance from its center to the 
border does not exceed 14 days of travel. From the value of 𝑝6, we can estimate a 

characteristic speed of √𝑝6/𝜋/14 = 63 km/day (assuming a disk shape), which is 

consistent with the speed of the 67 km/day of the cursus publicus (postal service) 

(Scheidel 2014) of the Roman Empire. A higher value of √𝑝6 14⁄  = 112 km/day can 

be estimated, which is in line with the highest speeds that the Romans could 
achieve of 120 km/day, navigating downstream by rivers (Scheidel 2014). Thus, 
the equation for 𝑧1 𝑧2⁄  and the value of 𝑝6 are compatible with the theory of Mar-
chetti and Ausubel (2012), in which stability is lost if travel time exceeds 14 days 
from the center to the border. 

The fourth equation (3.4) gives the dynamics of the amount of silver used in 
minting 𝑧1. We assume that 𝑧1 grows exponentially at a rate 𝑝7 = 2.5% per year, 
provided that the empire’s land extent 𝑦 is sufficiently small. Thus, the parameter 
𝑝7 is the net growth rate of silver, incorporating both discovery and mining, and 
attrition and wear. If a separate attrition and wear term is introduced, this would 
amount to a more rapid decline in 𝑧1 and 𝑧2. By making adequate changes in 𝑝7 and 
in the initial conditions, the higher rate of decline would not substantially alter the 
observed trajectory in Figure 1 (d). 

Once the empire grows beyond a certain point, there are diminishing returns to 
conquests and the subsequent fiscal policy leads to decreasing amounts of silver 
being used in coin production. We do not have historical data to validate the equa-
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tion for 𝑧1 directly. The fifth equation (3.5) gives the dynamics of the number of 
coins minted 𝑧2 and is deduced from equation (3.3) combined with the dynamics 
for 𝑧1. The dynamics of 𝑧2 were inferred from the equation for 𝑧1 𝑧2⁄  and 𝑧1 as 
follows:  

�̇�2 =
�̇�1

𝑧1

𝑧2 −
𝑧2

2

𝑧1

(
𝑧1

𝑧2

)
′

 

     =
�̇�1

𝑧1

𝑧2 − 𝑝5

𝑧2
2

𝑧1

(1 −
𝑦

𝑝6

)                                                                       (3.6) 

The equation that results for 𝑧2 is similar to that for 𝑧1 but with an additional 
term that captures a counteracting/balancing (negative) feedback loop if too many 
coins are produced relative to amount of silver 𝑧1 available. Furthermore, we can 
compare the trajectory for 𝑧2 with the historical record in Figure 1 (d). Thus, we 
can aim to reproduce the reference mode for silver coin production in Figure 1 (d) 
without affecting the output of subsystem (3.1)–(3.3) and the fit to the other 
reference modes in Figure 1 (a)–(c). 

4. Results 
In Figure 1, the reference modes of the data are compared to the model output. 
Within the uncertainty and granularity of the data, the army size, land conquered 
and the debasement are well reproduced by the subsystem (3.1)–(3.3). With 
regard to the number of coins minted, we see that equation (3.5) recovers the 
downward trajectory well but seems to overestimate the number of silver coins 
prior to 137 BCE. 

The model has a subsystem (3.1)–(3.3) for which we can write down an 
approximate closed-form solution. This helps us in fitting the trajectories of the 
dynamical system to the historical record. For the subsystem of ordinary 
differential equations (3.1)–(3.3), we find the following approximation for the 
solution up to 𝑡 ≤ 𝑡𝑑: 

       𝑥(𝑡) = 𝐴[1 + sin(𝑤[𝑡 + Δ])]                                                             (4.1) 

       𝑦(𝑡) = 𝐵[1 + sin(𝑤[𝑡 + Δ − 𝛿])] 

(
𝑧1

𝑧2

) (𝑡) = 𝐶[1 + cos(𝜔[𝑡 + Δ])] 

The parameters in the subsystem (3.1)–(3.3) and in the solution (4.1) are 
related as follows: 𝑝0 = 𝑤𝐴, 𝑝1 = 𝐶, 𝑝2 = 𝜔𝐵 sin(𝜔𝛿), 𝑝3 = 𝐴, 𝑝4 = 𝜔𝐵 cos (𝜔𝛿), 
𝑝5 = 𝜔𝐶, 𝑝6 = 𝐵. Thus, we see that not all the parameters 𝑝0, … , 𝑝6 are inde-
pendent, and it is sufficient to determine 𝐴, 𝐵, 𝐶, 𝜔, Δ and 𝛿. In Table 1, the initial 
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conditions of the subsystem (3.1)–(3.3) have been set using the solution (4.1) at 
time 𝑡0. 

Fitting the output of the model to the data requires us to take into account the 
following aspects: (1) the overall fit to the historical trajectory, which involves (a) 
the fit as measured by e.g., an 𝐿1 loss (least absolute deviations) and (b) the match 
of beginning and end values of the model output and the reference modes; and (2) 
the requirement of having: (a) positive parameters and (b) non-negative output 
values throughout the time periods in the data. 

A minimum of an 𝐿1 loss does not imply a good match of initial and final values 
of the model output with the reference modes; nor does it guarantee the non-
negativity requirements. While it is possible to perform an optimization taking into 
account these constraints, in practice we found it simpler to provide an initial 
estimate of the parameters that give a good visual match to the data and then fine-
tune the values by performing a grid search to locate the closest local minimum 
consistent with all the requirements. For details, see Appendix B. Following this 
procedure, we determined the parameter values in Table 2. The last two equations 
(3.4)–(3.5) introduce one additional parameter, 𝑝7, which is the maximum growth 
rate for 𝑧1 and 𝑧2. The parameter 𝑝7 and the initial values 𝑧1(𝑡0), 𝑧2(𝑡0) were 
determined to achieve the best fit with the reference mode in Figure 1 (d). 

 

Table 2. Alternative model parametrization for subsystem (3.1)–(3.3). 

Notation Meaning Value 

𝐴 Scaling parameter for army size 200 000 soldiers 

𝐵 Scaling parameter for territory 2 500 000 km2 

𝐶 Scaling parameter for debasement 0.5 

𝜔 Angular frequency 0.005712/year 

𝑇 Period 1100 years 

Δ Overall time shift 100 years 

𝛿 Time shift between army size and territory 4 years 

 

With finer tuning, a better fit of the model to the reference modes could possibly 
be achieved, but there are inherent uncertainties within the data, which imply that 
a more precise match is not necessarily more accurate. Similarly, a model with 
more parameters could provide a better fit and include more dependencies be-
tween the variables. However, in the interest of parsimony and in the spirit of 
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Figure 2. Comparing references modes (solid lines) with policies that change stock 
values of (a) army size, (b) land extent, (c) debasement (measured as percentage 
silver content of coins) to prevent the collapse of the Western Roman Empire. Two 
policies are shown: one that changes the stock values to prevent any oscillation, 
which we consider optimal (dashed lines) and another policy where stock values 
are 20% higher than the optimum (dotted lines). In (d), the phase portrait for 
debasement and land extent is shown for the different policies. 

 

Occam’s razor, we present in the model (3.1)–(3.5) what we found to be the 
simplest dynamics that can account for the historical record.  

The subsystem (3.1)–(3.3) of the model has one fixed point. In Appendix B, we 
analyze the stability of this equilibrium and find that it is neutrally stable. The 
phase portrait of the system is a center, where a neutrally stable trajectory is 
possible at any given radius from the fixed point (provided stock values remain 
positive). Thus, if stock values are changed in an exogenous way, then the system 
can enter a periodic orbit of a different amplitude; see Figure 2 (d). Specifically, we 
keep the linear part of the subsystem (3.1)–(3.3) and alter the discontinuous part 
(represented by the delta functions) to implement the exogenous changes. 
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Given the neutral stability of the subsystem (3.1)–(3.3), we can recommend 
mitigation policies for the decline of the Western Roman Empire. In Figure 2, we 
show what happens if all the stock values are changed. We illustrate two scenarios: 
(1) variables are changed such that the new values are exactly at the fixed point 
(dashed line), and (2) values are 20% higher than the fixed point (dotted line). If 
the fixed point is reached then no oscillations occur, which we consider to be the 
sign of an optimal policy. Otherwise, oscillations do occur, but at a smaller am-
plitude. In either case, the army size, land extent and silver content of coins do not 
reach the very low values seen in the archaeological record, and collapse is pre-
vented.  

Mathematically, the timing of this change in values is not significant, but in 
historical terms, this is likely a crucial aspect. For example, once the land extent or 
silver content of coins drops to smaller values than those of the fixed point, it is 
much more difficult to increase them afterwards than allowing for a continued 
decrease. In choosing the time for the exogenous changes in the stock values, we 
looked at when the silver content of coins reached the fixed point value of 50%. 
For the optimal policy, at this point the army size and land extent were reduced 
while keeping the silver content constant. For the sake of comparison, the other 
exogenous change was also done at the same time. 

5. Discussion 

In this section, we discuss certain aspects pertaining to the scope of the model. 
Specifically, we explain what elements we chose or chose not to incorporate; the 
extent to which the archaeological record is reproduced and how the mismatches 
can be understood; implications of the model and its relation to broader theories 
on societal collapse; and the nature of the mitigation policies proposed above and 
how they relate to other cases of collapse. 

The scope of the model is dictated in part by the availability and quality of the 
data, the possibility of finding system-wide, closed feedback mechanisms between 
the relevant variables, and the ability of the proposed equations to relate to and 
reproduce the archaeological record. These criteria are aimed at finding a feasible 
mathematical description of the system and do not necessarily guarantee that all 
factors that can be deemed archaeologically important will be incorporated within 
the model. As such, there are innumerable aspects the model does not address (e.g., 
trade relations, border attacks, army logistics), which do not lie within the scope 
of our modelling effort. 

A particularly important topic is the multi-metallic monetary system that the 
Roman Empire used throughout its lifetime. While bronze and silver coins were 
predominantly used in the early and middle periods of the empire, the later periods 
enjoyed an increased influx of gold (Bransbourg 2015), to the extent that the high-
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purity gold coins were commonly issued, most notably the aureus until the third 
century CE and the solidus thereafter. Given this, our model is not representative 
of the entire Roman monetary system, as we do not account for gold coinage. 
However, this does not undermine the consistency of our modelling effort, nor of 
our results. 

Gold had a different monetary circuit than the other metals, being isolated in its 
usage and distribution in part due to the inequality (Levitt 2019; Milanovic et al. 
2017) and stratification of Roman society (Bransbourg 2015), as well as certain 
general behavioral tendencies (such as Gresham’s law [Sparavigna 2014]). Access 
to gold was tightly regulated by the Roman bureaucracy and various laws were 
enacted in the fourth and fifth centuries aimed at restricting the giving of gold 
solely to the imperial household (Guest 2008). As such, while gold represented a 
substantial proportion of the monetary supply by value, it had a restricted use to 
the extent that: 

The contrast between an even more prevalent gold coinage and the 
increasingly debased base coins implies a sharp decoupling between 
two very distinct monetary circuits, one involving the upper strata of 
the Roman society, which used gold, while poorer individuals were 
left to deal with the inflationary consequences of the bronze 
currency’s ongoing devaluations. (Bransbourg 2015: 271) 

In contrast to the aureus, which functioned as a store of wealth for the aristo-
cratic elite (Jongman 2003), it has been argued that there was gradual diffusion of 
the solidus as a mass currency (Banaji 2002). Thus, the issue of gold circulation in 
the Roman Empire is a complex one we do not aim to resolve, but what we have 
shown through our model is that the debasement of the silver currency functions 
as a good numerical proxy for the factors involved in the general feedback 
mechanisms of the wider system—giving an emergent, aggregate measure of the 
numerous, more direct influences on the decline in army size and territory even in 
the later centuries of the empire. 

Nonetheless, gold coinage is an important aspect of empire and other modelling 
frameworks can accommodate its specific function and distribution. For example, 
game-theoretic network models have shown how optimal economic behavior can 
lead to social inequality, where a hub of influential players emerges that controls 
the most important resources and deprives the majority of the network (or it can 
also lead to more egalitarian distributions, depending on the game played) (Roman 
and Brede 2017). 

Regarding the fit to the historical data, we have shown that a system of ordinary 
differential equations (3.1)–(3.5)—which reflect relationships and feedback 
between variables of interest, specifically the army size, land extent and coin 
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quality and quantity of the Western Roman Empire—can generate trajectories that 
closely follow the archaeological record for these quantities. In principle, any 
number of models could achieve a good fit to the historical data; however, this does 
not guarantee the model is meaningful from a sociopolitical or economic 
perspective or that it is conservative in the number of parameters and 
relationships that it hypothesizes (in the spirit of Occam’s razor). Given the data 
we focused on (the reference modes in Figure 1), we have provided what we 
intended to be a minimal mathematical structure (in the form of a system of 
ordinary differential equations) sufficient to account for the behavior seen in the 
time series. 

A visible mismatch of the model and data is noticeable in the early periods in 
Figure 1 (c) and (d). With regard to Figure 1 (c), silver concentration of coins starts 
at approximately 20%, which is consistent with the silver content of ancient coins 
(Wickens 1995). Thus, historically and according to the model, coins prior to 137 
BCE have a lower silver content. Hence, regarding Figure 1 (d), the model output is 
an estimate of the total number of coins in circulation, not just of high silver 
concentration (which is what the data show). Coins with higher silver content are 
better preserved, so more reliable data is available for these types of coins (van 
Heesh 2011). This can explain the mismatch between the available data and model 
output. 

Another possible explanation is that, as we can see in Figure 1 (d), at 100 BCE 
several hundreds of millions of denarii were in circulation, and we assume that the 
extent of economic activity was proportional to availability of the coins. While 
coins of high purity could be found before 200 BCE, this does not necessarily mean 
their number was representative of the extent of economic activity at that time 
(Bowman and Wilson 2009). The model structure, on the other hand, remains 
unchanged, and its output shows the equivalent in coin production and purity for 
the overall economic activity even at early points in the empire’s history (just as it 
also does when the availability and quality of coins in the data is reflective of the 
economic state of the later empire). 

If there is a match of model output and data, this does not mean the model is 
historically accurate, but only that is consistent with known historical data and 
cannot be falsified without more data. A model does not have to be completely 
dismissed if found inconsistent with data, but rather it can be extended to in-
corporate new ranges and scales, while the previous (valid) models are recovered 
in certain limits. For example, within the time span in Figure 1 (a), (b) and (c), the 
subsystem (3.1)–(3.3) matches the historical record well, independent of the fit in 
Figure 1 (d). The mismatch of model output and data may mean that the model is 
not valid in a certain domain or that the interpretation is no longer compatible with 
the data, as may be the case with (3.4)–(3.5) and Figure 1 (d). 
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Still, there are genuine modelling artefacts inconsistent with the data, within 
the scope of this model. In particular, in Figure 1 (c), after the year 400 CE the silver 
content of coins increases, which points to a limitation of the model. This incon-
sistency arises from the discontinuity at 𝑡𝑑 = 395 in the army size and land extent. 
While this could be corrected by additional terms in the equation for the rate of 
change of 𝑧1/𝑧2, we prefer to keep the structure of the model (3.1)–(3.5) simpler 
and allow for greater transparency of the model’s limits. 

How does the model structure relate to known historical processes? As Figure 
1 shows, the equations are sufficient to reproduce the reference modes well. 
However, the structure of the model goes beyond this good fit. It implies that the 
value of the currency was a strong determinant of both army growth and territorial 
expansion. Historically, it is known that in case of cash shortages (e.g., due to 
military campaign costs), the central authority of the empire would debase the 
coins (Garnsey and Saller 2015). Fiscal policy invariably affects the resources of 
the army and the amount of land that can be conquered, and similarly, the success 
of campaigns affects revenue of the empire and the fiscal policies in place 
(including coin debasement). Thus, there were important causal feedback relation-
ships between military costs, territorial expansion and monetary issues.  

Furthermore, Tainter (1988) proposes a theory of societal collapse that 
surpasses the difficulties we outlined in Appendix A, building upon the idea of 
diminishing returns to investments in problem solving. This is exemplified well by 
the Roman Empire, whose early conquests were very profitable and allowed for 
the elimination of taxes for the citizens. With the expanding territory, military and 
administrative costs grew as well. At a certain point, further conquests and 
conflicts proved less beneficial and even amounted to a loss of resources, like the 
wars with the Germanic tribes. Maintenance of the empire ended up having larger 
costs than revenue, and territory was gradually lost. The Roman currency, the 
denarius, was being debased to expand the money supply and cover the costs (at 
least temporarily) (Tainter 2000). Throughout the period 200–500 CE, these 
negative returns manifested as the decline of the empire. Hence, at least according 
to Tainter’s (1988) theory, the feedback mechanisms that existed in the empire 
connect directly to its observed long-term development and decline. Similar 
arguments have been put forward regarding the Chinese dynastic cycle (Lattimore 
1940) and the Ottoman Empire (Lewis 1958), as well as the Maya (Culbert 1991).  

While such relationships are qualitatively known, the model (3.1)–(3.5) we 
propose provides in addition a precise, quantitative way to encapsulate these 
feedback relationships. Thus, it moves from a mental model to a mathematical one 
(Sterman 2000). Furthermore, except for a discontinuity at a specific time, the 
subsystem (3.1)–(3.3) has a linear structure. Thus, given the variables that we 
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investigate, it is a particularly simple structure that affords sufficient explanatory 
power to match the historical record. 

Regarding the mitigation policies, we remark that the timing for the optimal 
policy is 171 CE, at the midpoint of the rule of Marcus Aurelius. What the subsystem 
(3.1)–(3.3) suggests is that if at this point the empire had been split into two 
roughly equal parts and a fiscal policy implemented to keep silver content at 
approximately 50%, then the Western Empire could have potentially lasted for 
much longer in this new state. A similar policy was actually implemented in 395 
CE, but only with regard to the army size and land extent. Raising the silver content 
of the more widely and highly circulated coins was not feasible anymore, and gold 
had different dynamics of circulation, even if it was more abundant than in earlier 
times. In addition, the real changes were implemented too late to alter the 
trajectory substantially and prevent decline. Nevertheless, the measures taken in 
395 CE are in line with what the phase portrait of the subsystem (3.1)–(3.3) 
suggests to have been the adequate course of action, namely reduction of stocks to 
values closer to the fixed point. Of course, the model (3.1)–(3.5) is an idealization 
of reality and it is debatable whether the policy it suggests could have worked, but 
it does offer an interesting thought experiment in this regard. 

In addition, it is worthwhile to compare the dynamics of the model (3.1)–(3.5), 
which describes the socioeconomic system of the Roman Empire, with the 
dynamics for models of socio-ecological systems such as Easter Island (Roman et 
al. 2017) and the Classic Maya (Roman et al. 2018). In the case of Easter Island and 
the Classic Maya, the collapse is modelled by a super-critical Hopf bifurcation 
where, if the parameter representing the harvesting rate of resources per capita 
exceeds a critical threshold, the system moves from a stable fixed point to an 
attractive periodic orbit (a limit cycle) of large amplitude. Once the system reached 
the lower limits of the orbit, the collapse occurred. The necessary change to 
prevent collapse in this case is a change in the harvesting rate of resources, which 
translates into a lifestyle change for the entire society and its relationship to its 
environment. 

For the Western Roman Empire, the dynamics for the subsystem (3.1)–(3.3) 
shows that neutral stability and changes in parameter values are not the course of 
action best suited to prevent decline—it is the values of the variables (stocks) that 
require tuning to reduce oscillations. Rather than a lifestyle or cultural change for 
all inhabitants, the policy in the case of the socioeconomic system of the Roman 
Empire is more feasibly implemented by centralized state powers and intervention 
by elites. Thus, to tackle instability (in the sense of territorial loss), the state would 
need to intervene with a fiscal and military policy supported by elites that affects 
the wider population but ensures territorial integrity and economic stability (e.g., 
prevention of inflation via debasement). Thus, the dynamics the model (3.1)–(3.5) 
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uncovers for the Roman Empire represent a specific instance of the feedback and 
relationships posited by structural-demographic theory (Baker 2011). In this 
sense, through the example of the socioeconomic system we analyze, our work 
provides partial validation of the more general framework that structural-demo-
graphic theory develops. 

6. Conclusion 

Hundreds of reasons have been put forward for the fall of the Western Roman 
Empire; we have classified them into the several categories in Appendix A. Any one 
reason is not sufficient to explain the decline of such a complex society. We have 
aimed to develop an understanding that links several dependent factors together. 
On the other hand, given the complexity of Roman society, it would be unfeasible 
to attempt a model that covers all possible features. 

Thus, we identified certain key feedback relationships in the Western Roman 
Empire between aggregated variables representative for the whole empire, for 
which we had data: the army size, the area of the territory, and the debasement 
and quantity of silver coins. The main focus was on understanding the evolution 
over time of these variables, and we built a system of ordinary differential 
equations that captures this feedback quantitatively. 

The linear structure of a subsystem of the model allowed us to solve part of the 
system of equations analytically up to the time of division of the empire at 395 CE. 
Parameters in the model were optimized to match the historical record as closely 
as possible. In general, even an optimal choice of parameters does not guarantee a 
good fit. However, in this case, the structure of a model gives numerical solutions 
that show a close fit to the historical record. Furthermore, the parameters are 
archaeologically meaningful, relating to the scale of the variables. 

A stability analysis determined that the linear subsystem has a neutral center, 
with periodic orbits (for details, see Appendix B). This implies that by making 
adequate exogenous changes to the system at the right times and to the right ex-
tent, the life span of the Western Empire could have been increased significantly. 
We found that the optimal policy is to roughly halve the size of the army and 
territory and fix the silver content of coins at 50% at 171 CE, during the rule of 
Marcus Aurelius. 

For socio-ecological systems, such as Easter Island (Roman et al. 2017) and the 
Classic Maya (Roman et al. 2018), the collapse can be modelled as a type of critical 
transition, in which a stable fixed point changes to an attractive limit cycle, which 
is an isolated periodic orbit. The critical parameter that determines the sus-
tainability or collapse of the system is the extraction rate of resources per capita, 
which, if high enough, severely degrades the ecosystem support of the societies. 
For the Western Roman Empire, the decline is not due to a critical transition but 
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an unsustainable trajectory from the beginning, which could have been changed 
through a reduction in the values of key variables. Such a change was attempted in 
395 CE, when the empire divided, but the debasement of coins was too severe to 
allow for reversion to higher quality. In this later period, gold coinage became more 
common but had a different, more restricted circulation (Bransbourgh 2015; Guest 
2008) and thus, we argue, does not affect the model results. 

We have not solved the deeper problem of why the Western Roman Empire 
declined, a question that has been posed for centuries. However, we provide 
insight into the interlocking dynamics of some key aspects of the empire, sub-
stantiated by a quantitative model and analysis that offers a precise, mathemat-
ically definite view on the problem beyond conceptual models. 
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